LESSON PLAN

Date	 	
Name		

Trade:- Welder Week No:-eighteen & nineteen

Subject :- Classification of steel. welding of low, medium, high carbon and alloy steel. Effects of alloying elements on steel. Stainless steel- types. weld decay and weld ability.

Motivations:- in previous week we learned about weld ability of metals, importance of preheating, post –heating and maintenance of inter pass temperature.

PREPARATION: - Teaching Aids:-Chalk, Charts,

INTRODUCTION: -steel is a very important metal for general industry. More than 80

industry establish for steel work. So it is also important for welding.

PRESENTATION:-

Торіс	Information Point	Spot Hint
Plain Carbon Steels		
These steels usually are	e iron with less than 1 percent carbon, plus small amounts	of manganese,
phosphorus, sulfur, and	l silicon. The weldability and other characteristics of these	steels are primarily a
product of carbon conte	ent, although the alloying and residual elements do have a	minor influence.
	further subdivided into four groups:	
1. Low		
2. Medium		
3. High		
4. Very high		
	steels, low-carbon steels have less than 0.30 percent carbo	
	. They machine and weld nicely and are more ductile than	
	bon steels have from 0.30 to 0.45 percent carbon. Increased	d carbon means increased
	ength, decreased ductility, and more difficult machining.	
	5 percent carbon, these steels can be challenging to weld. I	
	nd sometimes even heating during welding become necess e mechanical properties of the steel after welding.	ary to produce acceptable
	1.50 percent carbon content, very high-carbon steels are u	used for hard steel
	cutting tools and truck springs. Like high-carbon steels, th	
	er welding to maintain their mechanical properties.	ley require near treating
Low-alloy Steels	a wording to maintain their meenanear properties.	
	lesigned for welded applications, their carbon content is us	sually below 0.25 percent
	ercent. Typical alloys include nickel, chromium, molybder	
	igh at room temperatures and increase low-temperature no	
	right combination, improve corrosion resistance and influ	
-	he alloys added can also negatively influence crack suscep	
	elding processes with them. Preheating might also prove n	
determined by using th	e carbon equivalent formula, which we'll cover in a later is	ssue.

High-alloy Steels

For the most part, we're talking about stainless steel here, the most important commercial high-alloy steel. Stainless steels are at least 12 percent chromium and many have high nickel contents. The three basic types of stainless are:

- 1. Austenitic
- 2. Ferritic
- 3. Martensitic

Martensitic stainless steels make up the cutlery grades. They have the least amount of chromium, offer high hardenability, and require both pre- and postheating when welding to prevent cracking in the heat-affected zone (HAZ).

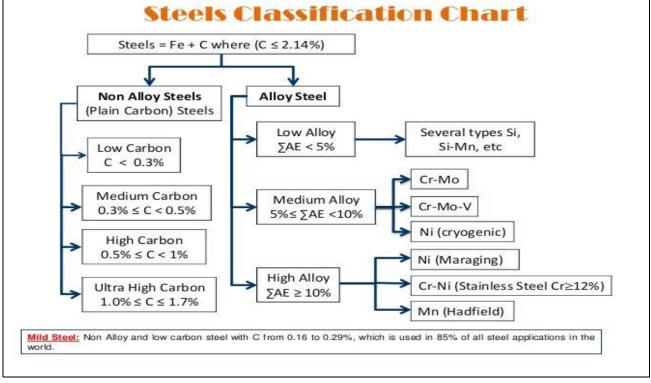
Ferritic stainless steels have 12 to 27 percent chromium with small amounts of austenite-forming alloys. **Austenitic** stainless steels offer excellent weldability, but austenite isn't stable at room temperature. Consequently, specific alloys must be added to stabilize austenite. The most important austenite stabilizer is nickel, and others include carbon, manganese, and nitrogen.

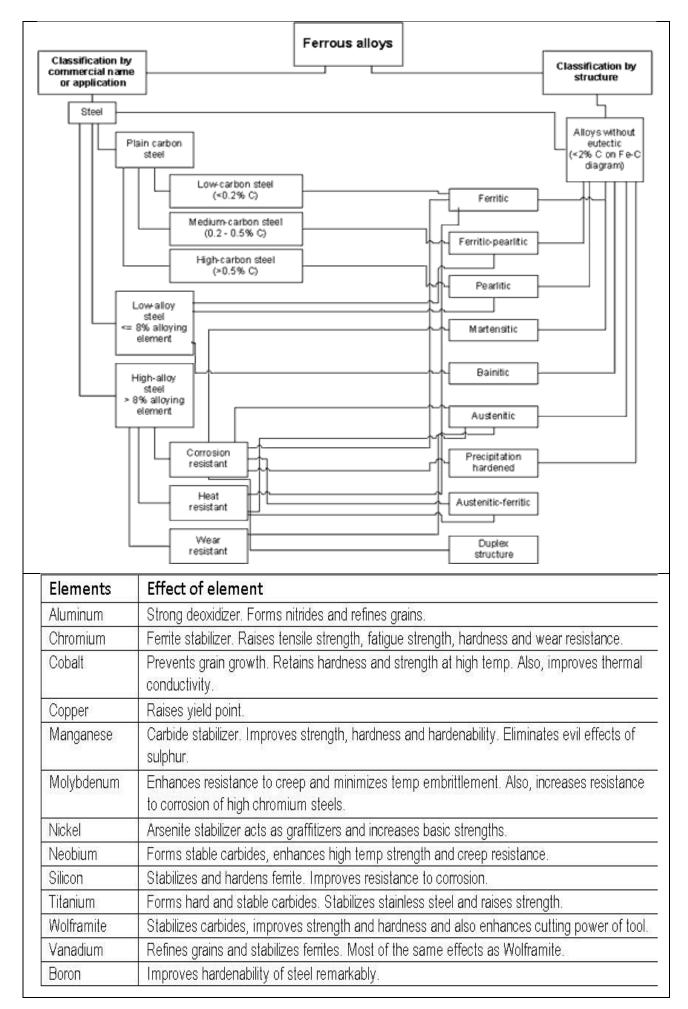
Special properties, including corrosion resistance, oxidation resistance, and strength at high temperatures, can be incorporated into austenitic stainless steels by adding certain alloys like chromium, nickel, molybdenum, nitrogen, titanium, and columbium. And while carbon can add strength at high temperatures, it can also reduce corrosion resistance by forming a compound with chromium. It's important to note that austenitic alloys can't be hardened by heat treatment. That means they don't harden in the welding HAZ.

Series Designation	Types and Classes	
10xx	Nonresulfurized carbon steel grades (plain carbon steel)	
11xx	Resulfurized carbon steel grades (free-cutting carbon steel)	
13xx	Manganese 1.75%	
20xx	Nickel steels	
23xx	Nickel 3.50%	
25xx	Nickel 5.00%	
30xx	Nickel-chromium steels*	
31xx	Nickel 1.25%, chromium0.65% or 0.80%	
33xx	Nickel 3.50%, chromium 1.55%	
40xx	Molybdenum0.25%	
41xx	Chromium 0.50–0.95%, molybdenum 0.12% or 0.20%	
43xx	Nickel 1.80%, chromium0.50% or 0.80%, molybdenum0.25%*	
46xx	Nickel 1.55% or 1.80%, molybdenum 0.20% or 0.25%	
47xx	Nickel 1.05%, chromium0.45%, molybdenum0.25%*	
48xx	Nickel 3.50%, molybdenum 0.25%	
50xx	Chromium 0.28% or 0.40%	
51xx	Chromium 0.80%, 0.90%, 0.95%, 1.00%, or 1.05%	
5xxxx	Carbon 1.00%, chromium 0.50%, 1.00%, or 1.45%	
60xx	Chrome-vanadium steels	
61xx	Chromium 0.80% or 0.95%, vanadium 0.10% or 0.15% min.	
70xx	Heat-resisting casting alloys	
80xx	Nickel-chrome-molybdenum steels*	
86xx	Nickel 0.55%, chromium 0.50% or 0.65%, molybden um 0.20%	
87xx	Nickel 0.55%, chromium 0.50%, molybdenum 0.25%	
90xx	Silicon-manganese steels	
92xx	Manganese 0.85%, silicon 2.00%	
93xx	Nickel 3.25%, chromium 1.20%, molybdenum 0.12%	
94xx	Manganese 1.00%, nickel 0.45%, chromium 0.40%, molybdenum 0.12%	
97xx	Nickel 0.55%, chromium 0.17%, molybden um 0.20%	
98xx	Nickel 1.00%, chromium0.80%, molybdenum0.25%*	

* Stainless steels always have a high chromium content, often considerable amounts of nickel, and sometimes contain molybdenum and other elements. Stainless steels are identified by a three-digit number beginning with 2, 3, 4, or 5.

Steel Classification Systems

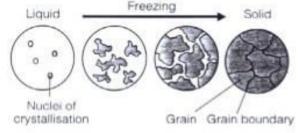

Before we look at a couple of common steel classification systems, let's consider one more highcarbon metal, cast iron. The carbon content of cast iron is 2.1 percent or more. There are four basic types of cast iron:


- 1. **Gray cast iron**, which is relatively soft. It's easily machined and welded, and you'll find it used for engine cylinder blocks, pipe, and machine tool structures.
- 2. White cast iron, which is hard, brittle, and not weldable. It has a compressive strength of more than 200,000 pounds per square inch (PSI), and when it's annealed, it becomes malleable cast iron.
- 3. **Malleable cast iron**, which is annealed white cast iron. It can be welded, machined, is ductile, and offers good strength and shock resistance.
- 4. **Ductile cast iron**, which is sometimes called nodular or spheroidal graphite cast iron. It gets this name because its carbon is in the shape of small spheres, not flakes. This makes it both ductile and malleable. It's also weldable.

Now let's take a look at a typical steel classification system. Both the Society of Automotive Engineers (SAE) and the American Iron and Steel Institute (AISI) use virtually identical systems. Both are based on a four-digit system with the first number usually indicating the basic type of steel and the first two numbers together indicating the series within the basic alloy group. Keep in mind there may be a number of series within a basic alloy group, depending on the amount of the principal alloying elements. The last two or three numbers refer to the approximate permissible range of carbon content in points (hundredths of a percent).

These classification systems can become fairly complex, and Figure 1 is just a basic representation. Be sure to reference the most recent AISI and SAE publications for the latest revisions.

That's a look at some basics concerning the iron-carbon-steel relationship and its influences on welding and metal alloys. Next time we'll look at hardening and ways to make metals stronger. We'll also consider the influences of some key alloying elements and the effects of welding on metallurgy.



Stainless Steel Alloy	Classification	Typical Applications Germany France Russia ALSI BS 970Parta DIN 17440 NFA35-572
430	Generation (Construction) Ferritic (Instruction) Construction (Construction)	Used for moderately corrosive applications involving vegetables, fruits, and dry foods. Ideal for table surfaces, equipment trim, and places with little welding or forming.
420	Martensitic —	Very durable; excellent corrosion resistance. Used for knife blades, spatulas, and other utensils.
316	101708 Austenitic 10180956 2101809	Superior durability; ideal for food processing equipment and components. Can withstand corrosive foods and frequent cleaning and sanitizing.
304	vioiswose Austenitic occiavio	Excellent corrosion resistance; often used for items requiring welding and forming, such as vats, bowls, and piping.
303	OCTANIAN Austenitic Doctanich Doctanich Doctanich	Less weldable but more machinable than 304. Good corrosion resistance; widely used in trim and other applications not intended for direct contact with food.
1.4539	(oceanao) Austenitic oceanao	Suitable for hot or cold corrosive foods that sit for long periods, such as brines and other salty liquids.
1.4462	Duplex Duplex	Stronger than 1.4539; ideal for same applications.
6% Molybdenum	obertzwierken Austenitic	Well suited for corrosive foods and high temperatures such as steam heating and hot work areas.

SENSITIZATION (weld decay)

- When 18-8 stainless steel is heated to 400°-900°c.
- Formation of chromium carbide at grain boundaries highest at 650°c.
- An inter- granular corrosion occurs and a partial disintegration of the metal may occur.
 Freezing Solid

Questions:-

- 1. What is steel ?
- 2. What is high carbon steel ?
- 3. What is alloy steel ?
- 4. What is weld decay?

Next Lesson: - Brass –types-properties and welding methods. Copper–types-properties and welding methods.

Assignment:- Classification of steel. welding of low, medium, high carbon and alloy steel. Effects of alloying elements on steel. Stainless steel- types. weld decay and weld ability.

Checked by.....

Instructor.....