LESSON PLAN

Date_____

Name_____

Trade:- Welder

Unit/Lesson:-Forty seven

Subject:- Hard facing: necessity, methods of preparation, various hard facing alloys and advantages of hard facing.

Motivation:- In previous lesson we discuss about Welding codes and standards. Reading

of assembly drawing. Welding procedure specification and procedure qualification records.

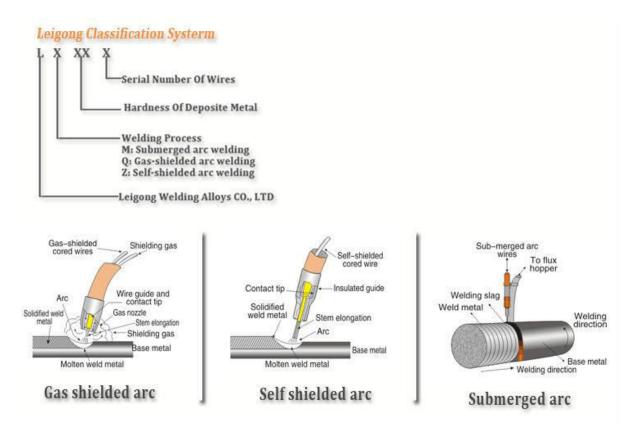
PREPARATION

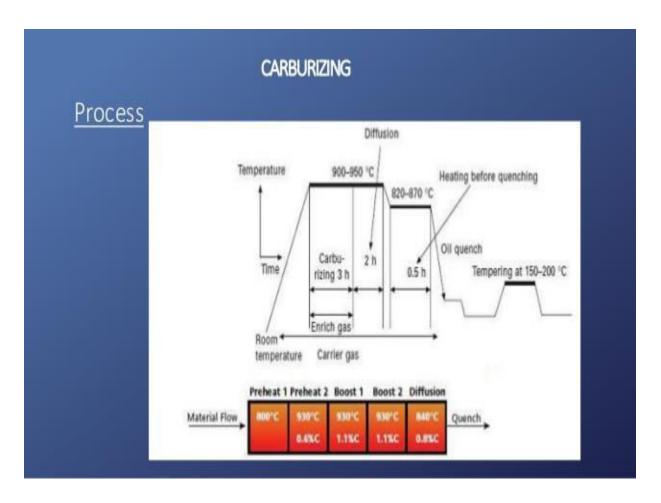
1) (Materials, Tools, Models, Charts and other aids)

INTRODUCTION: Hard facing mean hard the surface. In many jobs we use only surface

Topic	Information Point	Spot Hint		
Hard facing	Hard facing is a process to hard a metal surface.			
Preparation	We use grinding, machining, filing, chipping and sand	blasting to clean		
	surface before hard facing			
Major Surface	 Finishing and Polishing – covered previously 			
Treatments	 Coatings 			
	 Conversion Coatings (oxidation, anodizing) 	ng)		
	 Thermal Coatings (carburizing – flame s 			
	 Metal Coatings (electrochemical, electrochemical) 	oless)		
	 Deposition 			
	 Physical Vapor Deposition 			
	 Chemical Vapor Deposition 			
	 Organic 			
Conversion	Oxidation			
Coatings	Phosphate Coatings			
<u> </u>	Chrome Coatings			
Conversion	> Oxidation			
Coatings -	• Not all oxides are detrimental – many ar	•••		
Oxidation	adhering leading to passivation and hard • Al ₂ O ₃	ening of surface		
	 Chromium in Stainless steel rapi 	dly corrodes to		
	passivate the surface			
	Gun-bluing			
	• Heat steel to 700 deg F in steam or oil			
	 Blue coating offers some corrosion resis 	tance, but little		
	wear benefit			
	Chemical Baths – similar in nature to gun-bluin	g		
	Black Oxide – chemical application			

1


Conversion Coatings – Phosphate Coating	 Typically applied to steel, copper and stainless steel Anodizing – electrochemical conversion Usually done to Aluminum 2-25 mm thick typically Multiple colors possible Improved Corrosion and Wear Resistance Immersion in a Zn-P bath with Phosphoric acid causes growth of a crystalline zinc phosphate layer Iron, Zinc or Manganese Phosphate layer formed Typically applied to C-steel, low alloy steel and cast irons Sometimes applied to Zinc, Cadmium, Aluminum and Tin Typically very thin ~ 2.5 mm
Thermal Treatments	 Surface Heat Treatment Diffusion Coating Hot-Dip Coatings Weld Overlay Coatings
 Thermal Treatments – Surface Heat Treatment 	 Basic concept is to heat the surface to austenitic range, then quench it to form surface martensite - workpiece is steel Heating Methods Flame Treatment Induction Heating Copper coil wraps around part to heat by induction Electron Beam or Laser Beam Hardening Typically heat small area and allow the bulk solid heat capacity to quench the small heated area
Thermal Treatments – Diffusion Coating	 With low carbon steel, the surface can be enriched by diffusion of C or N into surface Carburizing Heat steel to austenitic range (850-950 °C) in a carbon rich environment, then quench and temper Nitriding Nitrogen diffusion into steels occurs around 500-560 °C to form a thin hard surface Good for Cr, V, W, and Mo steels. Will embrittle surface of Aluminum. Metal Diffusion Chromizing – Chromium diffuses into surface to form corrosion resistant layer. Take care with carbon steels as surface will decarburize Aluminizing – Used to increase the high temperature corrosion resistance of steels and superalloys
Metal Coatings	 Electroplating Electroless Coatings Metallizing of Plastics and Ceramics
Metal Coatings -	 Used to increase wear and corrosion resistance


Electroplating	sı • P (1 • A	 abstrate rocess is slow so coating thickn 10-500 mm) pplications Tin and Zinc are deposite Zinc and Cadmium are deresistance (Cadmium is to food applications) Copper is deposited for e Nickel for corrosion resisting Chromium can be used to and reduce adhesion to warinc Precious metals for decord 	ed on steel for further working eposited on parts for corrosion oxic and can not be used for lectrical contacts stance o impart wear resistance to dies vorkpieces such as aluminum or ration or electronic devices
Metal Coatings –		art is submerged into an aqueou	is bath filled with metal salts,
Electrode Coatings		educing agents and catalysts reduce metal to ions to form the	ne coating
	Excellent	t for complex geometries as dep	position is uniform across
	surface re radii))	egardless of geometry (except v	very sharp corners (0.4 mm
Metal Coatings -	• H	as the appearance of stainless s	
Electrode Nickel Plating		utocatalytic immersion process ey characteristics:	5
	• C	 Heat treatable coating (to Non-porous Corrosion resistant .001" thick typical Withstand load to 45 ksi an be applied to: steel and stainless steel, i magnesium, copper, brass 	ron, aluminum, titanium,
Electroless Nickel vs. Chrome Plating		Γ	
		ELECTROLESS NICKEL	HARD CHROME
METAL DISTRIBUTION		VERY GOOD	POOR
CORROSION RESISTANCE		1,000 HOURS ASTM B117	400 HOURS ASTM B117
HARDNESS: AS DEPOSITED HEAT T	TREAT	48-52 Rc 70 Rc	64-69 Rc 48-52 Rc
MELTING POINT		1800°F	2900°F
WEAR RESISTANCE		GOOD	VERY GOOD
CO-EFFICIENT OF FRICTION: DYNAMI	CSTATIC	0.19 0.20	0.16 0.17

DUCTILITY		1-2%	Very Low Almost 0
EFFLUENT COST		RELATIVELY LOW	HIGH
DEPOSITION RATE (PER HOUR PER HOU	J R)	.00020003	.001002
EFFECTIVE OF HYDI EMBRITTLEMENT O PLATED COMPONEN	N	FAIR/NOT SERIOUS	USUALLY SERIOUS
Metal Coatings – Metallizing of Plastics and Ceramics	pi	 oor adhesion is the major challe rocesses, however it is more chapplications Decorative (plumbing fix reflectivity (headlights), touchpads), and EMF shi 	allenging in this case.) (tures, automotive parts), electrical conduction (electronic
Vapor Deposition		 hysical Vapor Deposition (PVI Thermal PVD Sputter Deposition Ion plating hemical Vapor Deposition (CV) 	
reactive elemen Produces by-p Process typical Coating will crack upo Plasma CVD	a compoun nt and gas products th ly done at on cooling done at 30 Typical fo Diamond (rocesses	at must be removed from the p elevated temps (~900°C) if large difference in thermal co 0-700°C (reaction is activated b r tool coatings Coating, Carburizing, Nitriding	pefficients of expansion

		e H-5 J Processing	
Process	Heat Source	Mode of Application	Hardfacing Alloy Form
Oxyfuel gas welding	Oxyfuel gas	Manual or automatic	Bare cast rods or powder
Shielded metal arc welding	Electric arc	Manual	Flux coated rods
Open arc welding	Electric arc	Semiautomatic	Flux cored tube wire
Gas tungsten arc welding	Inert gas shielded electric arc	Manual or automatic	Bare rods or wire
Submerged arc welding	Flux covered electric arc	Semiautomatic	Bare solid or tubular wire
Plasma transferred welding	Inert gas shielded plasma arc	Automatic	Powder, hot wire
Plasma arc welding	Inert gas shielded plasma arc	Manual or automatic	Same as GTAW
Spray and fuse	Oxyfuel gas	Manual	Powder
Plasma spray	Plasma arc	Manual or automatic	Powder
Detonation gun	Oxyacetylene detonation	Automatic	Powder

4

Hardfacing Alloy	Oxidation Resistance	Wear Resistance	Brittleness	Weldability
Stellite 6	Good	Fair	Fair	Good
New Alloy	Better	Better	Fair	Good
Tribaloy T-400C	Better	Good	Fair	Fair
Tribaloy T-800	Good	Better	Very	Poor

Table 1 - The characteristics of cobalt-based hardfacing alloys

Table 3-7 Results of Measurements of Oxide Content, Porosity, Microhardness and Almen N Strip Values.

Parameter	WC/CoCr	Cr ₃ C ₂ /NiCr	T-400	
Oxide Content	<1% @ 200X	<1% @ 200X	<1% @ 200X	
Porosity	<1% @ 400X	1.0 - 1.5% @ 400X	<1% @ 400X	
Microhardness	1150 HV	1115 HV	650 HV	
Almen N	10.5	5.7	9.3	

Questions:-

- 1. What is hard facing?
- 2. Why need hard surfacing and how many types of hard facing?
- 3. What is nickel coating?

Assignments:- :- Hard facing: necessity, methods of preparation, various hard facing alloys and advantages of hard facing.

Checked by.....

Instructor.....